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Abstract 
 

A recently developed inversion technique based on the Markov Chain Monte Carlo (MCMC) 
method is applied to the interpretation of water content data from boreholes around the 
Laboratory for the purpose of obtaining estimates of the local infiltration rate. The MCMC 
method provides better estimates of infiltration rate and its uncertainty than existing inverse 
modeling methods, principally because it takes into account heterogeneity in the medium 
properties. Numerical experiments with the method illustrate that including small-scale 
heterogeneity is important for improved matches to the data. When applied to the data from wells 
in the vicinity of LANL, the method provides reasonable estimates of uncertainty for wells in a 
variety of topographic settings. Infiltration rates obtained from modeling of water content data 
from wells in Los Alamos and Mortandad Canyons are in general agreement with previous 
estimates, but in addition, definitive estimates of the uncertainty have been obtained as well. The 
analyses presented here use a simplified version of the inversion model. The more advanced 
versions of the method that include transient flow and solute transport should be useful for 
interpreting data currently being collected as part of the ER activities in Mortandad Canyon and 
other locations around the Laboratory. 
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I. Model Development 
 

In this section, we describe the mathematical model and the inversion model requirements for 
obtaining estimates of the local infiltration rate in the vicinity of a well in which measurements 
of water content and chemical concentrations have been made. This theoretical development is 
then used later to interpret water-content profiles in several wells on the Pajarito Plateau. 

I-1. Statement of the Problem 

We consider transient flow in variably saturated porous media satisfying the following continuity 
equation and Darcy's law: 
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subject to initial and boundary conditions  
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where q is the specific discharge (flux), ψ(x,t) + x1 is the total head, ψ is the pressure head, Ψ0(x) 
is the initial pressure head in the domain Ω, Ψ(x,t) is the prescribed head on Dirichlet boundary 
segments ΓD, Q(x,t) is the prescribed flux across Neumann boundary segments ΓN, n(x)=(n1,…, 
nd)T is an outward unit vector normal to the boundary, C[ψ]= dθ/dψ is the specific moisture 
capacity, θ is the volumetric water content, and K[ψ] is the unsaturated hydraulic conductivity 
(assumed to be isotropic locally). Both C and K are functions of pressure head and soil properties 
at x. For convenience, they will be written as C(x,t) and K(x,t) in the sequel. The elevation x1 is 
directed vertically upward. In these coordinates, recharge has a negative sign. 
 

It is clear that models are needed to describe the constitutive relationships of K versus ψ and θe 
versus ψ when the flow is unsaturated. No universal models are available for the constitutive 
relationships. Instead, empirical models are typically employed, including the Gardner-Russo 
model [Gardner, 1958; Russo, 1988], the Brooks-Corey model [Brooks and Corey, 1964], and 
the van Genuchten-Mualem model [van Genuchten, 1980]. Most analytical solutions of the 
deterministic unsaturated flow equations and most previous stochastic analyses used the 
Gardner-Russo model because of its simplicity. However, it is generally accepted that the more 
complex van Genuchten-Mualem and Brooks-Corey models may be more flexible than the 
simple Gardner-Russo model in describing measured data of K(ψ) and θe(ψ). In this study, we 
use the van Genuchten-Mualem model:  
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where ψ  ≤ 0. In the above, S(x,t)= θe/(θs-θr) is the effective saturation, θr is the residual 
(irreducible) water content, θs is the saturated water content, α and n are fitting parameters, and 
m = 1 – 1/n. With (8), Cs(x,t) = dθe/dψ can be expressed explicitly as  

  (9) mmm
rss tStSntC )],(1)[,()](1)()[(),( /1/1 xxxxx −−−= θθα

In this study, θS and θr are assumed to be deterministic, as their variabilities are likely to be small 
compared to that of the effective water content θe [Russo and Bouton, 1992], while the saturated 
hydraulic conductivity Ks, the pore size distribution parameter α, and the fitting parameter n are 
treated as random functions. We assume that the log-transformed saturated hydraulic 
conductivity f(x) = ln Ks(x), the log-transformed pore size distribution parameter β(x) = ln α(x), 
and µ(x) = ln [n(x)-1] follow the normal distribution. Now suppose that there are fm  direct 

measurements on the log hydraulic conductivity, fi, 1, fi m= , mβ  measurements on the pore-size 

distribution parameter β, iβ , 1,i mβ= , and mµ  measurements on the fitting parameter, iµ , 

1,i mµ= . The sampling locations for three different kinds of direct measurements may be 
different. 
 
The transport of a nonreactive solute can be described by the classical convection-dispersion 
transport equation [Bear, 1972]:  
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subject to appropriate initial and boundary conditions. Here C is the nonreactive solute 
concentration, Dij is the dispersion coefficient tensor, and v is the seepage velocity, which can be 
computed from specific discharge q.  
 
An alternative way to characterize nonreactive transport is to record the position of a particle at 
time t that originates from position a at time t =  and is described by the following kinetic 
equation 

0t

 ( ) ( );d t
dt

=
X a

V X , (11) 

with the initial condition of ( )0;t =X a a , where V is Lagrangian velocity. Now we are interested 
in the travel time, the time taken for a particle to travel from a to a well or to across a control 
plane that is perpendicular to the mean flow direction and located at some distance from the 
source. The travel time 0t tτ = −  can be determined from (11) using the particle tracking 
technique. If particles are released in the flow domain and  travel times are recorded for 

each particle, we could have  measurements on travel time
pm tm

pm m× t ijτ , 1, ,   1,p ti m j m= = .  
 
In this development, in addition to direct measurements on soil properties, it is assumed that we 
also have mψ  measurements on the pressure head, mθ  water content measurements, and  
concentration measurements or  measurements on travel time

Cm

pm m× t ijτ . 
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I-2. Representation of Soil Properties 

As mentioned above, the soil properties p, where p = f, β, or µ,  are treated as spatially stationary 
random space functions with mean 〈p〉, and covariance function Cp(x,y). These properties are 
represented by np basis kernel functions bp(x,χ) centered at some fixed spatial locations 
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where ( ) , 1,p
j pj nγ = , are coefficients to be determined in the inverse procedure. The kernel 

functions can be chosen, for example, as an exponential function 
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=
= − −∑x χ , where d is the number of space dimensions and λi is a 

parameter that controls the influence of the kernels  in the i( , )pb x χ th dimension. For the fixed 

basis kernel functions, the parameter field p(x) can be computed from ( ) , 1,p
j pj nγ = . 

I-3. Bayesian Inference 

Determining the infiltration rate best estimate and uncertainty requires an inverse model 
algorithm. In this study, a Bayesian approach is taken. The essence of this approach is embodied 
in Bayes' Theorem, which can be understood as a mathematical description of the learning 
process. Bayesian statistical inference requires an additional input not needed by frequentist 
procedures such as maximum likelihood: a prior probability distribution for parameter γ, which 
embodies our judgment before seeing any data D of how plausible it is that the parameters could 
have values in the various regions of parameter space. The introduction of a prior is the crucial 
element that converts statistical inference into an application of probabilistic inference. When we 
combine a prior distribution π(γ) for the parameters with the conditional distribution for the 
observed data, we get a joint distribution for all quantities related to the problem: 

 ( , ) ( ) ( | ) ( ) ( | )D D D Dπ γ π γ π γ π π γ= =  (13) 

From this equation, we can derive Bayes' rule for the posterior distribution of the parameters 
given observed data D: 

 ( | ) ( | ) ( )D L Dπ γ γ∝ π γ  (14) 

where L(D|γ) is the likelihood function. For our problem described above, the likelihood function 
L(fo,βo, µo; ψo,θo, τo | γ) of observed data D = (fo,βo, µo; ψo,θo, τo)  given parameters γ may be 
written as 
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where is an  matrix determined by observation errors and representativeness of 

measurements for parameters p = f, β, and µ, 

1

p
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observation error and model discrepancy on dependent variables  h = ψ, θ, τ, or C.  For the 
Bayesian approach, we need to specify a prior distribution for γ. One such example is 

 ( ) ( )2/ 2 ( ) ( ) / 2 ( ) ( )
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where is the set of pairwise adjacencies, and matrix W is defined as 
i j
∑
∼

  (17) 
1                  if   and  are adjacent
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0                  otherwise                
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and ni is the number of neighbors to location i. The prior distribution for the hyperparameter λγ in 
(16) can be chosen as a Gamma distribution 

  (18) γλ
γγ λλπ ba e−−∝ 1)(

Finally, the posterior distribution of parameters (γ, λγ) given observed data D = (fo,βo, µo; ψo,θo, 
τo) can be written as 

 ( , | ) ( | ) ( | ) ( )D L Dγ γ γπ γ λ γ π γ λ π λ∝ . (19) 

Estimation and inference are based on this posterior distribution. Note that we only need to know 
the posterior distribution up to a constant proportionality for our Markov chain Monte Carlo 
simulations discussed in the next section.  
 

I-4. Markov Chain Monte Carlo Simulations 

Parameter sampling methods based on Markov chains incorporate the required search aspect in a 
framework in which it can be proven that the correct distribution is generated, at least in the limit 
as the length of the chain grows. Writing (γ, λγ)(t) for the set of variables at time step t, where γ 
itself is a vector, the chain is defined by giving an initial distribution for (γ, λγ)(0) and the 
transition probabilities for (γ, λγ)(t) given the value for (γ, λγ)(t-1). These probabilities are chosen 
so that the distribution of (γ, λγ)(t) converges to that for (γ, λγ) as t increases and so that the 
Markov chain can feasibly be simulated by sampling from the initial distribution and then in 
succession from the conditional transition distributions. 
 
Typically the Markov chain explores the space in a "local fashion". In some methods for 
example (γ, λγ)(t) differs from (γ, λγ)(t-1) in only one component of the state, e.g., it may differ 
with respect to γi

(t), a component of γ, for some i but have γj
(t) = γj

(t-1) for j ≠ i. Other methods may 
change all components at once but usually by only a small amount. Locality is often crucial to 
the feasibility of these methods. In the Markov chain framework, it is possible to guarantee that 
such step-by-step local methods eventually produce a sample of points from the globally correct 
distribution. The procedure implemented in this study can be summarized as follows: 

(1) Initialize parameters at some value (γ, λγ)(0). Theoretically, these parameters can be initialized 
using any values taken from the initial distribution. For example, one can initialize (γ, λγ) by 
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drawing a set of random numbers. In this study, we choose $\gamma$ such that the initial 
parameter fields computed from $\gamma$ are close to the mean fields, which were given. 

(2) Update each γi according to Metropolis rules: 
• Draw a value γi

* from the uniform distribution U[γi
(t-1)− r, γi

(t-1) + r], where r is a pre-
determined small number. Let γ* be a vector that differs from γ(t-1) only in their ith 
component, i.e., γ* = ( , …, ( 1)

1
tγ − ( 1)

1
t

iγ
−

− , ( )t
iγ , ( 1)

1
t

iγ
−

+ …, ( 1)t
nγ
− )T.  

• Compute η = π(γ*,λγ|D)/π(γ(t-1),λγ|D). Accept the new value γi
* with probability 

min(1,η), or else reject new value γi
* (i.e., keep γi unchanged). In other words, if the 

newly proposed value increases the posterior probability (i.e., η >1), the new value is 
accepted. Note that even if the proposed value reduces the posterior probability (i.e., 
η < 1), the value could still be accepted with a probability of η. 

(3) Update λγ given γ according to the following posterior distribution of λγ, again using 
Metropolis rules: 

 ( | ) ( | ) ( ) ,
2 2

Tm Wa bγ γ γ
γ γπ λ γ π γ λ π λ

⎛
∝ Γ + +⎜

⎝ ⎠
∼

⎞
⎟ , (20) 

where a and b are two prescribed constants. 

(4) Repeat steps 2 and 3 until the chain converges. 
 
To reduce the possible effect of the starting values, results from some early iterations (called 
burn-in period) are discarded.  

I-5. Synthetic Example 
In this section, we demonstrate the effectiveness of the approach and examine its performance on 
a synthetic example in which “data” are generated from a forward run of the numerical model. 
This synthetic study is being performed in advance of applying the method to the water-content 
data collected on the Pajarito Plateau. For this hypothetical problem, the flow domain is a soil 
column with a depth of L = 10 m, uniformly discretized into 100 segments (101 nodes). The 
pressure head is prescribed at the bottom as ψ(0) = 0 (the water table) and water infiltration with 
a rate of q = 0.002 m/day is prescribed at the top. The statistics of soil properties for this 
hypothetical soil are given as 〈f〉 = 1.0, = 1.0, 〈β〉 = 0.5, = 0.01, 〈µ〉 = −0.9, = 0.01, and 
a correlation length of λ

2
fσ 2

βσ 2
µσ

f = λβ = λµ = 1.0. The variability of these parameters can also be given in 
terms of the coefficient of variation as CVKs = 131%, CVα = CVn ≈  10%. We then generate 
three random fields as ``true" parameter fields, using the specified statistics and exponential 
covariance functions for three soil properties. These “true” fields are used as references to access 
the quality of our inverse model. We solve flow equations (both steady state and transient flow) 
and transport equations using these true parameter fields to obtain “true” head fields (steady state 
or transient) and concentration fields (or travel time).  
 
We take nf = nβ = nµ = 5 samples from these true parameter fields as our direct measurements of 
f, β, and µ. We also take nψ = nθ  = 20 samples for the pressure head and water content and nC = 
6 concentration samples at three elapsed times t = 0.1, 10.0, and 100. After taking all these 
measurements, we proceed as though the ensemble statistics (the mean, variance, and correlation 
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lengths) used in generating these original parameter fields are not available, and that all we have 
are the direct and indirect measurements. Our goal is to estimate three parameter fields using 
these measurements. 
 
As a first step, we may need to estimate sample statistics of hydrologic properties. Several 
methods can be used to estimate the sample statistics, i.e., the mean, variance, and correlation 
length. One simple way is to compute the mean and the variance from direct measurements and 
find the correlation length by fitting the variogram. An alternative is to estimate these statistics 
from the maximum likelihood method using both direct and indirect measurements. In our 
Markov Chain Monte Carlo method (MCMC), these statistics can be estimated simultaneously in 
the inverse process.  However, for simplicity, and also for comparison with some other inverse 
methods (such as kriging or cokriging methods), in our preliminary study, we compute these 
statistics from direct measurements only. These estimates are 〈f〉 = 1.711, σf

2 = 1.455, 〈β〉 = 
0.477, σβ

2 = 0.012, 〈µ〉 = −0.848, σµ
2 = 0.008, and a correlation length of λf = λβ = λµ ≈ 1.2. 

 

For the MCMC method, based on the domain size and the estimated correlation length of about 
1.2, we use a grid of 18 basic kernel locations, more-or-less uniformly distributed in the domain, 
as shown in Figure 1. The error matrices ∑p

are chosen to be 2
pp nIε , where p = f, β, µ, ψ, θ, or 

C, and  stands for an identical matrix of n × n, and ε's are prescribed standard deviations for 
errors of variables p's. Here we choose 

nI

fε = 0.10, βε  = 0.02, µε = 0.02, ψε  = 0.01, θε  = 0.005, 
and Cε  = 0.002.  

z
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Figure 1. Layout of the problem configuration for the hypothetical example. 
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The estimated hydrologic parameter fields from the MCMC method (blue curves) are illustrated 
in Figure 2, as compared to the true parameters fields (red curves). The results demonstrate that 
the estimated parameter fields match the true ones very well. Note that the estimated values at 
the conditioning points deviate from their corresponding true values, because the specified 
measurement errors in the MCMC method allow the estimated values vary within the range of 
the measurement error. The degree of such deviations is characterized by the standard deviation 
of errors specified by pε , where p = f, β, or µ. 
 
Figures 3, 4, and 5 compare the true pressure head, moisture content and concentration profiles 
against the simulated ones at three different times. The results suggest that the MCMC method is 
capable of providing excellent fits to the hydrologic data, making it an appropriate method for 
the water-content data for the Pajarito Plateau.  
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Figure 2. Comparison of the true soil properties and inverse results for the 
synthetic example. 
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Figure 3. Comparison of the true and simulated pressure head profiles for the 
synthetic example. 
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Figure 4. Comparison of the true and simulated moisture content profiles for the 
synthetic example. 
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Figure 5. Comparison of the true and simulated concentration profiles for the 
synthetic example. 
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II. Application of the MCMC Method to LANL Water Content Data 

In this section, we apply the MCMC method described above to use the water-content data to 
estimate local infiltration rate in the vicinity of a number of wells at the LANL site. Since there 
is significant model development required to implement this new analysis approach, we begin by 
discussing the model setup. Then, we examine one of the wells, MCOBT-4.4, in greater detail, 
using it to assess the effectiveness of the technique. We then present the analyses for the other 
wells in a more concise way.  

Table 1 lists the hydrologic properties used for the model. The table contains both the 
permeability and porosity values used for each unit, as well as unsaturated hydraulic parameters, 
α and n, for defining the van Genuchten (1980) constitutive relationship. We assume that 
porosity is a deterministic constant (a constant for each type of stratigraphic unit), while the 
permeability, pre-size distribution parameter α, and fitting parameter n, are spatially random 
functions and are modeled by log-normal distributions.  The property values of a unit listed in 
the table will be used as initial values for the MCMC simulation if the unit occurs in a borehole. 

 
Table 1. Stratigraphic Units and Their Hydraulic Properties at the Los Alamos Area 

 
No Description k(m2) α (1/m) n porosity

1    Tsfu (all units below Tsfuv, undifferentiated, volcaniclastic)     2.65E-13 5 2.68 0.35

2    Tb1A (Cerros del Rio basalt-occurs within Santa Fe group)       2.96E-13 5 1.5 0

3    Tsfuv (Santa Fe Group, aquifer unit)                                           2.65E-13 5 2.68 0.35

4    Tb2 (Cerros del Rio basalt-occurs within Tsfuv)                         2.96E-13 5 1.5 0

5    Tpt (Puye Formation, Totavi equivalent)                                     4.73E-12 5 2.68 0.35

6    Tpf (Puye Formation, fanglomerate)                                            4.73E-12 5 2.68 0.35

7    Tb4 (Cerros del Rio basalt-occurs within Puye Formation)        2.96E-13 5 1.5 0

8    Tt1 (Tschicoma dacite-occurs within Puye Formation)               2.96E-13 5 1.5 0

9    Tt2 (Tschicoma dacite-occurs within Puye Formation)               2.96E-13 5 1.5 0

10    Qbog (The Guaje pumice bed)                                                     1.53E-13 0.081 4.026 0.667

11    Qbof (Otowi member of Bandelier Tuff)                                     7.25E-13 0.66 1.711 0.469

12    Qct (Cerro Toledo interval)                                                          8.82E-13 1.52 1.506 0.473

13    Qbtt (Basal Pumice Unit, Tshirege member of Bandelier Tuff)  1.01E-12 1.52 1.506 0.473

14    Qbt1g(Glassy unit, Tshirege member of Bandelier Tuff)            3.68E-13 2.22 1.592 0.509

15    Qbt1v(Vitric unit, Tshirege member of Bandelier Tuff)             1.96E-13 0.44 1.66 0.528

16    Qbt2 (Unit 2, Tshirege member of Bandelier Tuff)                     7.48E-13 0.66 2.09 0.479

17    Qbt3 (Unit 3, Tshirege member of Bandelier Tuff)                     1.01E-13 0.29 1.884 0.469

18    Qbt3t (Unit 3t, Tshirege member of Bandelier Tuff)                   5.10E-13 2.57 1.332 0.466
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19    Qbt4 (Unit 4, Tshirege member of Bandelier Tuff)                     9.18E-14 0.667 1.685 0.478

20    Qbt5 (Unit 5, Tshirege member of Bandelier Tuff)                     1.43E-14 0.17 1.602 0.349
 

II-1. Model Setup 
Although the method is not restricted to these assumptions, the simplified model used to perform 
the MCMC analyses of the moisture content profiles is a one-dimensional, steady state flow 
model with uniform numerical grids. The goal of the analysis is to estimate the infiltration rate 
and hydrologic parameters associated with the measured water contents from the wells. 
Therefore, in general, the infiltration rate, the saturated hydraulic conductivity, and the van 
Genuchten parameters are jointly varied in the inverse model runs. For testing purposes, other 
strategies are employed to examine the influence of these choices on the inversion results. 
 
FEHM is the numerical model used to perform the model runs. Grid spacing was chosen so that, 
in general, the spacing was smaller than the spacing of water content measurements. This 
approach reduces the possible loss of conditional points. For cases in which more than one 
measurement is located in single computational grid cell, the average water content value of all 
measurement points were taken this node as a new conditional point. In addition, since for each 
node there are three parameters to be estimated, there are practical limitations to the resolution of 
the grid for situations in which parameters are allowed to vary on a node-by-node basis. For 
these reasons, we selected a grid spacing ranging from about 3 to 5 feet, depending on the 
problem.  
 
The one-dimensional column representing a given well is divided into a number of zones, mainly 
based on the hydrostratigraphy determined from well logs. When detailed information (upper 
and lower bounds) about subdivisions in a particular formation is available, each subdivision is 
defined as an individual zone. Initially, hydraulic properties are assumed to be the same for all 
subdivisions of the formation, and the MCMC method seeks to fit the water content data by 
adjusting the hydrologic parameters in the column. Three strategies are employed for this 
purpose: 
 

1. Properties are assumed to be uniform random constants within a zone, but vary from zone 
to zone. 

2. Properties are defined by a set of kernel functions, the coefficients of which are updated 
sequentially. 

3. Properties are defined on a node-by-node basis. 
 
These methods represent increasingly complex models of the heterogeneities in hydrologic 
properties. Part of our study will consist of assessing which method is the appropriate level of 
complexity for a given data set, taking into consideration data sparseness and computational 
efficiency. In most cases, we will not use the node-by-node approach (method 3) due to 
computational costs and data limitations. For example, for a soil column of 100 nodes, there are 
300 hydraulic parameters plus the infiltration rate, which means that for any particular 
parameter, 301 model runs are required to perform an update. The reason to develop method two 

12 



is that it seems like a reasonable compromise that allows heterogeneities within thick units to be 
modeled without an excessive number of parameters. 
 
Finally, because the water content measurements are usually available in the upper part of the 
well and hydraulic properties in the deep zones that are far away from the measurement locations 
have little impact on data fitting, properties in these deep zones are modeled as random 
constants. 
 
In each MCMC simulation, the run starts from an initial set of soil parameters and infiltration 
rate, and the parameter values are updated sequentially based on the rules described in Section I. 
One of the virtues of the approach is that the parameter uncertainty statistics can be derived from 
the variability of values obtained during the chain. However, the estimated parameters in the first 
part of the chain strongly depend on the choice of initial settings. Thus, this initialization phase 
of the simulation (called the burn-in period) is ignored when computing parameter statistics.  The 
length of burn-in, which is problem dependent, is determined graphically from a plot of the 
negative log posterior versus the number of updates. Initially, this metric is possibly very large, 
since the initial setting may significantly deviate from the true solution. The burn-in period is 
approximated graphically as the point in the simulation at which the negative log posterior 
decreases to the point at which the variation becomes small. 

 
Since the MCMC method takes a perturbation approach to parameter updating (i.e., the new 
value for any parameter is derived by adding a possible perturbation to the old value), the 
sequence of values for each parameter are not completely independent. As a consequence, the 
computed parameter variance may be artificially small. Because we seek to use the analysis to 
compute the statistics (mean and variance) for each parameter, we take a subset of the sequence 
by selecting values within a predefined interval. The variance for parameter is then used to 
construct the confidence intervals around the mean predictions. 
 
In the following subsections, we will illustrate our inversion results for the selected wells on the 
LANL site. First, we examine well MCOBT-4.4 in detail to investigate the effect of different 
algorithmic choices on the inversion results. 

II-2. Well MCOBT-4.4 
MCOBT-4.4 is an intermediate well in Mortandad canyon. Geologic units encountered in 
MCOBT-4.4 are, in descending order: canyon-bottom alluvium; deposits of the Cerro Toledo 
interval; the Otowi Member of the Bandelier Tuff, including the basal Guaje Pumice Bed; an 
upper sequence of fanglomerate and sand deposits of the Puye Formation; lavas, interflow units, 
and subflow deposits of the Cerros del Rio volcanic field; and a lower sequence of fanglomerate 
deposits of the Puye Formation. Depths and elevations of the contacts between these units are 
shown in Figure 6. Canyon-bottom alluvium (Qal) was cored from 0 to 63.7 ft depth at MCOBT-
4.4. The alluvium consists predominantly of moderately weathered detritus of the Tshirege 
Member of the Bandelier Tuff, and is unconsolidated. In this study, we exclude this layer of 
alluvium in our simulations. The simulation domain ranges from the depth of 64ft (elevation 
6769.2ft, or 2063.25m) to 493ft (elevation 6343.2ft, or 1933.4m), where perched water occurs. 
The column is uniformly discretized into 143 elements of size 3ft (0.914m). There are 30 
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measurements of water content available. Here we assume that the error matrix for the water 
content as appeared in (15) is a diagonal 2

nI
θθθ

ε=∑  with θε  = 0.01. 
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Figure 7. The negative log posterior (a) and the infiltration rate (b) derived using 
deterministic hydrologic properties and random infiltration rate (starting from a 
low value) 
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Figure 8. Comparison of observed water content with fitted profiles of different 
numbers of updates for the case with deterministic hydrologic properties and 
random infiltration rate (starting from a low value) 

In the first case, we fix the hydrologic properties of the column based on stratigraphic units at the 
well, while allowing the infiltration rate to vary, starting from a lower value of 5×10-7 kg/sec 
(=15.7 mm/year) with a possible maximum increment of r = 2×10-7 kg/sec at each update. The 
infiltration rate and its corresponding negative log posterior function, which measures the 
closeness of modeled and observed water content, are shown in Figure 7.  Figure 7(a) shows that 
after a few hundred updates the model becomes stabilized with a negative log posterior of 474, 
which is equivalent to a root-mean-square-error (RMSE) of water content = 0.056. The error is 
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are relatively large fraction of the water content.  As illustrated in Figure 8, the fit between the 
observed and modeled water content is not very good for this run. With only the infiltration rate 
being varied, and no adjustment of the hydrologic properties, the method is limit in its ability to 
capture the details of the water content profile. Regarding the infiltration rate estimation, after 
ignoring the first 1000 realizations of the chain, the statistics of the infiltration rate are a mean 
infiltration rate of 〈q〉 = 442.6 mm/year and a standard deviation of σq = 25.6 mm/year. 
 
Next, we examine the results with an identical parameter strategy as above, but start the MCMC 
simulation with a very high infiltration rate of 5×10-5 kg/sec (=1568 mm/year) and a possible 
maximum increment of r = 1×10-6 kg/sec at each update. The resulting Markov chain is 
illustrated in Figure 9. The mean and standard deviation of the infiltration rate after ignoring the 
first 1000 realizations are: 〈q〉 = 439 mm/year and σq = 22.4 mm/year. Thus, the method has the 
desirable property that final infiltration rate is independent of the initial value. However, it seems 
from these two cases that good fits to the measured water content data cannot be obtained by 
simply varying the infiltration rate alone.  Modification of hydrologic parameters appear to be 
required to fit the observed water-content data. 
 
When conducted a modeling exercise such as this, it is important to note that the inverse problem 
is, in general, ill-posed, and the solution to the problem is non-unique. Therefore, the ability to 
impose constraints on parameter variability based on a priori knowledge or expert judgment is 
critical for obtaining realistic infiltration estimates. The MCMC method allows this to be done 
very easily. In the calculations that follow, when updating hydrologic properties k, α, and n, we 
set the following constraints for each stratigraphic unit: 10-2 k0 ≤ k ≤ 102 k0, 0.5 α0 ≤ α ≤ 2α0, and 
max(0.5n0, 1.05) ≤ n ≤ 2n0, where k0, α0, and n0 are respectively permeability, α, and n values 
for the stratigraphic unit. 
 
In the third case, in addition to the variable infiltration rate, we allow the hydraulic properties to 
vary as random constants for the three parameters of each unit, but the medium is assumed to be 
uniform within the layer (method 1 in Section II-1).  The results are illustrated in Figures 11-13. 
Note that although the negative log posterior becomes stabilized after a few hundred updates, the 
infiltration rate can vary significantly (Figure 11b).  Any of these infiltration rates, together with 
a combination of variable hydrologic properties, can fit the water content data equally well. 
Finally, note that the fits, though improved, still exhibit systematic deviations and bias (Figure 
12).  
 
These results suggest that some of the layers at well MCOBT-4.4 need to be modeled by sets of 
kernel functions (method 2) or on a node-by-node basis (method 3) to provide the level of 
heterogeneity in hydrologic properties required to obtain a better match to the profile. 
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Figure 9. The negative log posterior (a) and the infiltration rate (b) derived using 
deterministic soil properties and a random infiltration rate (starting from a high 
value) 
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Figure 10. Comparison of observed water content with fitted profiles of different 
numbers of updates for the case with deterministic soil properties and a random 
infiltration rate (starting from a high value) 
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Figure 11. The negative log posterior (a) and the infiltration rate (b) derived using 
random constant soil properties and a random infiltration rate. 
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Figure 12. Comparison of observed water content with fitted profiles of different 
number of updates for the case with random constant soil properties and a random 
infiltration rate. 
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Figure 13. Estimated statistics of hydrologic properties, mean (red curves) and 
plus/minus two standard deviations (blue and green curves), for the case with 
random constant soil properties and a random infiltration rate. 
 

 
In the next run (case 4), we model the soil properties in Qbo (depth 101.9 to 462 ft) by 10 kernel 
functions while other three thin layers (Qct, 64-101.9ft, Qbog, 462-474ft, and Tpf, 474-493 ft) 
are modeled by individual nodes. This strategy results in a total of 143 grid nodes, 23 of which 
are modeled individually, and 121 nodes of which are represented by 10 kernel functions. This 
yields 33 groups of hydrologic parameters, plus one additional parameter for the infiltration rate. 
The initial hydrologic properties at grid nodes are assigned based on their stratigraphic units, and 
the initial infiltration rate is 5×10-7 kg/sec (=15.7 mm/year).  
 
Figure 14(a) depicts the negative log posterior as a function of the number of updates. The figure 
shows that the negative log posterior drops quickly at the beginning as the simulation proceeds, 
and then stabilizes at about 10, which is equivalent to the root-mean-square-error (RMSE) of 
0.0082 for water content. Figure 14(b) illustrates the decrease of the negative log posterior for 
the first few sets of updates as a function of 34 parameter groups, where parameter zero 
corresponds to the infiltration rate. The figure clearly shows that updates on the infiltration rate 
have a significant effect on reducing the negative log posterior. On the other hand, variations of 
the hydrologic properties in the bottom part of the column have a minimal impact on the data 
fits. 
  
The comparison between the modeled and observed water content is shown in Figure 15(a), for 
different numbers of updates. The figure indicates that, by updating hydrologic properties at each 
node the upper part of column, we are able to fit the observed water content values very well. 
Furthermore, note that in the lower part of Qbo the water content can vary significantly, a 
consequence of the fact that there is no data in this part of the column. Finally, the water content 

19 



in the bottom two layers (below 1945m) changes very little, even though the soil properties in 
these layers are highly heterogeneous (Figure 16). 
 
The estimated mean and standard deviation of the infiltration rate are 125.3 mm/yr and 30.9 
mm/yr, respectively. Because the infiltration rate is normally distributed (Figure 17d), these 
statistics mean that at the 95 confidence level the actual infiltration rate ranges from 63.5 mm/yr 
to 187.1 mm/yr. 
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Figure 14. Negative log posterior vs (a) the number of updates, and (b) parameter 
groups. 
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Figure 15. (a) Comparison of observed water content with fitted profiles of 
different numbers of updates for the case 4, and (b) the mean and confidence 
interval for volumetric water content. 
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Figure 16. Estimated statistics of hydrologic properties, mean (red curves) and 
plus/minus two standard deviations (blue and green curves), for the case with 
random constant soil properties and a random infiltration rate. 
 

All simulations presented thus far have used the mean values of parameters listed in Table 1 for 
the initial values of the MCMC run. To test the sensitivity of the inversion results on initial 
hydrologic properties, three more cases were performed with different starting parameter values 
than those in case 4, which is considered to be the base case. In case 5, we initialize the model 
with permeability values 20 times larger than the values based on the stratigraphic units. In cases 
6 and 7, the initial α and n fields are respectively 1.5 larger than those in case 4.  
 
The estimated mean and standard deviation of infiltration rate for these different cases (cases 4-
7) are listed in Table 2, along with the root-mean-square-error (RMSE) for each case. Although 
the statistics of the infiltration rate differ from case to case, all four cases (the base case and the 
three sensitivity runs) fit the observed water content equally well, as evidenced from the RMSE 
in Table 2.  The histograms of the infiltration rate for these cases are illustrated in Figure 17. For 
comparison purposes, the histogram for the base case is also shown. It is interesting to see that 
the histogram of the infiltration rate for the base case and the case with an initially high 
permeability setting follows approximately the normal distribution, whereas the cases with high 
α and n values the histogram exhibit skewness and, in the case of Figure 17b, bimodality.  
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Table 2. Test Cases for Well MCOBT-4.4 
 

Case # Description 

Mean 
infiltratio

n rate 
(mm/yr) 

Std deviation 
of infiltration 
rate(mm/yr) 

RMSE of 
water 

content 
Comments 

1 
Deterministic hydrologic 
properties; random infiltration rate 
(starting from lower q) 

442.6 25.6 0.0562 Poor fitting 

2 
Deterministic hydrologic 
properties; random infiltration rate 
(starting from higher q) 

439.4 22.4 0.0562 Poor fitting 

3 Random constant hydrologic 
properties; random infiltration rate  122.9 78.7 0.0488 

Normally 
distributed 

infiltration rate 

4 
Correlated hydrologic properties; 
random infiltration rate, starting 
from mean properties (base case) 

125.3 30.9 0.0084 
Normally 
distributed 

infiltration rate 

5 
Correlated hydrologic properties;  
random infiltration rate, starting 
from higher α values (1.5 times) 

44.3 11.8 0.0089  

6 
Correlated hydrologic properties; 
random infiltration rate, starting 
from higher n values (1.5 times) 

78.4 21.3 0.0098  

7 
Correlated hydrologic properties; 
random infiltration rate; starting 
from higher Ks values (20 times) 

129.2 28.2 0.0090 
Normally 
distributed 

infiltration rate 
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Figure 17. Histograms of the infiltration rate derived from simulations with 
various initial settings that are different from those based on rock units: (a) 
permeability is 20 times larger, case 5; (b) α values are 1.5 times larger, case 6; 
(c) n values are 1.5 times larger, case 7; and (d) based on rock units, case 4, the 
base case. 

II-3. Borehole MCOBT-8.5 
For this and the remaining wells analyzed below, the same method used in the base case model 
was used to fit the measured water content data. Specifically, the infiltration rate and the 
hydrologic parameters are simultaneously varied in the MCMC inversion process. This allows 
the results of the different wells to be directly compared. 
 
MCOBT-8.5 is an intermediate well in Mortandad canyon. Geologic units encountered in 
MCOBT-8.5 consist of the following, in descending order: canyon-bottom alluvium; an interval 
of canyon-bottom alluvium plus colluvium; the Otowi Member of the Bandelier Tuff including 
the basal Guaje Pumice Bed; an upper sequence of Puye Formation fanglomerates; lavas, 
interflow units, and subflow deposits of the Cerros del Rio volcanic field; and a lower sequence 
of fanglomerate deposits of the Puye Formation (Figure 18). There are 14 water content 
measurements used in the inverse process.  The estimated mean and standard deviation of the 
infiltration rate (see Table 3) are 21.9 mm/yr and 5.7 mm/yr, respectively, which are much lower 
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than those at Well MCOBT-4.4. This result is consistent with a relatively dry condition at this 
location, which agrees with the fact that there is no evidence of perched water at this borehole. 
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Figure 18. Comparison of observed water content with fitted profiles of different 
numbers of updates for well MCOBT-8.5. 
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Figure 19. Estimated statistics of hydrologic properties, mean (red curves) and 
plus/minus two standard deviations (blue and green curves) for well MCOBT-8.5. 
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II-4. Borehole LADP-3 
Borehole LADP-3 is located in Los Alamos Canyon. LADP-3 penetrated a thick sequence of 
slope-derived colluvium and stream-derived alluvium on the canyon floor before entering 
bedrock [Broxton et al., 1995]. Bedrock units penetrated by the borehole include the Otowi 
member of the Bandelier Tuff and gravels of the Puye Formation (Figure 20). The borehole 
encounters two perched water zones, one in the canyon’s alluvium and the other at a depth of 
325 ft in the Guaje Pumice Bed.  The hydrologic properties and the infiltration rate are estimated 
using 45 water content measurements. The fitting of modeled water content to the observed is 
illustrated in Figure 20, and the predicted soil properties and their associated uncertainties are 
depicted in Figure 21. The estimated mean and standard deviation of the infiltration rate are 220 
mm/yr and 16.7 mm/yr, respectively. 

II-4. Borehole LADP-4 
Borehole LADP-4 is located in DP Canyon. Because of the topographic setting, this region is 
expected to have lower infiltration rates than the adjacent well LADP-3. LADP-4 penetrated 
alluvium on the canyon floor and then entered bedrock unit: the Tshirege Member of the 
Bandelier Tuff (including the Tsankawi Pumice Bed), fluvial sediments of Cerro Toledo interval, 
the Otowi Member of the Bandelier Tuff (including the Guaje Pumice Bed), and Puye Formation 
(Figure 22). One purpose of drilling this borehole was to determine if perched groundwater 
occurs beneath DP Canyon. No perched groundwater was encountered. Moisture contents were 
determined for 139 samples, but 125 measurements are used in our inverse modeling because the 
rest of measurements were located in the alluvium, which is excluded from the inverse modeling. 
The fitting of modeled water content to the observed is shown in Figure 22, and the predicted 
soil properties and their associated uncertainties are depicted in Figure 23. The estimated mean 
and standard deviation of the infiltration rate are 10 mm/yr and 1.9 mm/yr, respectively. As 
expected, the infiltration estimates are more than an order of magnitude lower than those at 
LADP-3. 
 
It is interesting to notice that, based on the presence of the Guaje Pumice Bed (Qbog), the water 
content profile should have a peak in this pumice, as shown from the earlier part Markov chain.  

II-5. Well R-9 
R-9 is located in Los Alamos Canyon near the eastern boundary of Los Alamos National 
Laboratory. The principal geologic units encountered in R-9, in descending order, consist of 
alluvium, basalts of the Cerros del Rio volcanic field and basaltic tephra, old alluvium, sediments 
of the Puye Formation (see Figure 24). In the model, we have excluded the alluvium and 
modeled only two large layers, the basalt and Puye Formation. Because of large variations on 
measured water contents, we further divide the basalt into five subunits based on the 
petrographic and chemical character of the unit [Broxton et al., 2001]: Upper Tholeiite, Lower 
Tholeiite,  Upper Alkalic Basalt, Lower Alkalic Basalt, and Basaltic Tephra,  and the Puye 
Formation into two subunits: Upper Puye Formation and Lower Puye Formation.  The inversion 
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results are shown in Figures 24 and 25. The estimated mean and standard deviation of the 
infiltration rate are 139.9 mm/yr and 84.2 mm/yr, respectively.  

II-6. Well LAOI(A)-1.1 
The stratigraphic units at this borehole and the inversion results are illustrated in Figures 26 and 
27. The estimated mean and standard deviation of the infiltration rate are 523.7 mm/yr and 45.9 
mm/yr, respectively. This infiltration rate is the highest of any well examined  
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Figure 20. Comparison of observed water content with fitted profiles of different 
numbers of updates for well LADP-3. 
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Figure 21. Estimated statistics of hydrologic properties: mean (red curves) and 
plus/minus two standard deviations (blue and green curves) for well LADP-3. 
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Figure 22. Comparison of observed water content with fitted profiles of different 
numbers of updates for well LADP-4. 
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Figure 23. Estimated statistics of hydrologic properties: mean (red curves) and 
plus/minus two standard deviations (blue and green curves) for well LADP-4. 
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Figure 24. Comparison of observed water content with fitted profiles of different 
numbers of updates for well R-9. 
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Figure 25. Estimated statistics of hydrologic properties: mean (red curves) and 
plus/minus two standard deviations (blue and green curves) for well R-9. 

 
 
 

Volumetric Water Content

El
ev

at
io

n
(m

)

0 0.2 0.4 0.6 0.8
1800

1820

1840

1860

1880

1900

1920

1940

1960

1980

2000

2020

2040

2060

2080

2100

Observed
100 updates
1000 updates
2000 updates
10000 updates

Tt2

Qbof

Qbog

Tpf

Tpf

 

29 



Figure 26. Comparison of observed water content with fitted profiles of different 
numbers of updates for well LAOI(A)-1.1. 
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Figure 27. Estimated statistics of hydrologic properties: mean (red curves) and 
plus/minus two standard deviations (blue and green curves) for well LAOI(A)-
1.1. 

 
 
 
 

Table 3. Summary of Estimated Infiltration Statistics at Different Wells 
 

Wells Locations Mean infiltration 
rate (mm/yr) 

Std deviation of 
infiltration 

rate(mm/yr) 
Comments 

MCOBT-4.4 MC Canyon 125.3 30.9  

MCOBT-8.5 MC Canyon 21.9 5.7 No perched water 

LADP-3 LA Canyon 220.0 16.7  

LADP-4 DP Canyon 10.9 1.9 No perched water 

R-9 LA Canyon 139.9 84.2  

LAOI(A)-1.1 LA Canyon 523.7 45.9  
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The summary of infiltration rates presented in Table 3 illustrates the wide range of infiltration 
values obtained from water content profiles, depending on the topographic setting and location 
within canyons. Overall, the results are in general agreement with past analyses of infiltration 
rates at these and other similar locations on the Pajarito Plateau. For example, the difference in 
infiltration rate estimated between LADP-3 and LADP-4 illustrates the vast difference in 
downward percolation flux depending on whether the location in a wet canyon or a mesa/dry 
canyon. Within Los Alamos Canyon itself, the difference between LADP-3 and LAOI(A)-1.1 is 
thought to be due to the proximity of the latter well to a more intensely fractured region 
associated with the Guaje Mountain fault zone (Gray, 1997). The estimated value in R-9, located 
further down canyon, is lower than that of either of these two wells. However, the infiltration 
into highly fractured basalts with low permeability matrix may violate the basic assumption of 
porous flow in some of the rock units, making this estimate potentially suspect. 
 
In Mortandad Canyon, the relative infiltration rates in the two wells are in keeping with the 
locations of these wells. MCOBT-4.4 is located further up canyon, and it may be that the source 
of water in MCOBT-8.5 may be depleted by infiltration and ET processes at this down-canyon 
location. Another factor to consider in Mortandad Canyon is that the analyses in these 
intermediate wells are focused on water content values in the upper part of the stratigraphic 
section. Recent reductions in the water discharged from the Radioactive Liquid Waste Treatment 
Facility (RLWTF) may have already impacted the water content values in the upper parts of the 
vadose zone where the measurements are made. If this is the case, then the infiltration rate 
estimates reflect the present-day infiltration rate, rather than the historical, presumably higher, 
infiltration rate. This concept of declining infiltration rate over time due to changes in the 
operation of the RLWTF has been promoted by Kwicklis et al. (2005), who applied the concept 
to an interpretation of several tritium peaks in well R-15. In principle, a transient analysis of the 
water content information could be performed for these wells to examine this possibility, but this 
approach was beyond the scope of this study. The analysis developed herein should be extended 
to this and other wells in Mortandad Canyon to evaluate the water content and contaminant 
profile information. 
 
With regard to the new analysis technique, the MCMC method proved to be a very effective 
means for determining the mean and standard deviation of infiltration from the water content 
profiles. Obtaining the standard deviation is an important advance because many inverse 
techniques yield unrealistic estimates of the uncertainty. The MCMC method should provide 
appropriate uncertainty estimates because it takes into account heterogeneity in the medium 
properties, using that as a basis for obtaining better fits to the water content data. Numerical 
experiments with the method illustrate that including small-scale heterogeneity is important for 
improved matches to the data. When applied to the data from wells in the vicinity of LANL, the 
method provided reasonable estimates of uncertainty for wells in a variety of topographic 
settings. The more advanced versions of the method that include transient flow and solute 
transport should be useful for interpreting data currently being collected as part of the ER 
activities in Mortandad Canyon and other locations around the Laboratory. 
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